Publications

Publications about project results

P1

  • Bayon C, Emmens AR, Afschrift M, Van Wouwe T, Keemink AQL, Van Der Kooij H, Van Asseldonk EHF. Can Momentum-Based Control Predict Human Balance Recovery Strategies? IEEE Trans Neural Syst Rehabil Eng 28: 2015–2024, 2020, 10.1109/TNSRE.2020.3005455
  • Bayón, C. , Keemink, A. Q. L. , Mierlo, M. V. , Rampeltshammer, W. , Kooij, H. V. D. , & Asseldonk, E. H. F. V. (2022). Cooperative ankle-exoskeleton control can reduce effort to recover balance after unexpected disturbances during walking. Journal of neuroengineering and rehabilitation, 19, [21]. https://doi.org/10.1186/s12984-022-01000-y
  • van Mierlo, M. , Vlutters, M. , van Asseldonk, E. H. F. , & van der Kooij, H. (2021). Centre of pressure modulations in double support effectively counteract anteroposterior perturbations during gait. Journal of biomechanics, 126, [110637]. https://doi.org/10.1016/j.jbiomech.2021.110637
  • M. van Mierlo, J.I. Ambrosius, M. Vlutters, E.H.F. van Asseldonk, and H. van der Kooij, “Recovery from whole body angular momentum perturbations during walking”, pre-print: http://ssrn.com/abstract=4059749 , under review at Journal of Biomechanics, 2022
  • [In preparation:] M. van Mierlo, J. A. Ormiston, M. Vlutters, E.H.F. van Asseldonk, H. van der Kooij, “Balance response to pelvis perturbations in various directions during staggered stance”, 2022

p2

  • [1] B. J. Caasenbrood, A. Y. Pogromsky, and H. Nijmeijer, “Dynamic modeling of hyper-elastic soft robots using spatial curves,” IFAC Proc. Vol., 2020.
  • [2] B. J. Caasenbrood, A. Pogromsky, and H. Nijmeijer, “A Computational Design Framework for Pressure-driven Soft Robots through Nonlinear Topology Optimization,” IEEE International Conference on Soft Robotics, RoboSoft 2020, 2020, pp. 633–638.
  • [3] B. J. Caasenbrood, A. Pogromsky, H. Nijmeijer, “Energy-based control for soft manipulators using cosserat-beam models,” Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics, ICINCO 2021, 2021, pp. 311–319.
  • [4] B. J. Caasenbrood, A. Pogromsky, H. Nijmeijer, “Dynamic modeling of hyper-elastic soft robots through differential geometry of curves,” Soft Robotics, 2021. (under review).
  • [5] B. J. Caasenbrood, F.E. van Beek, H. Khanh Chu, I.A. Kuling, “A Desktop-sized Platform for Real-time Control Applications of Pneumatic Soft Robots,” IEEE International Conference on Soft Robotics, RoboSoft 2022, 2022. (submitted).

P5

  • [1] Dijkshoorn, M. Schouten, G. Wolterink, R. Sanders, S. Stramigioli and G. Krijnen, “Characterizing the Electrical Properties of Anisotropic, 3D-Printed Conductive Sheets for Sensor Applications,” in IEEE Sensors Journal, doi: 10.1109/JSEN.2020.3007249 (Open access)
  • [2] M. Schouten, B. Prakken, R. Sanders and G. Krijnen, “Linearisation of a 3D printed flexible tactile sensor based on piezoresistive sensing,” 2019 IEEE SENSORS, Montreal, QC, Canada, 2019, pp. 1-4, doi: 10.1109/SENSORS43011.2019.8956652 (Open access).
  • [3] A. Dijkshoorn, M. Schouten, G. Wolterink, R. Sanders and G. Krijnen, “Characterizing the Electrical Properties of Anisotropic, 3D-Printed Conductive Sheets,” 2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Glasgow, United Kingdom, 2019, pp. 1-3, doi: 10.1109/FLEPS.2019.8792279 (Open access).
  • [4] D. Kosmas, M. Schouten and G. Krijnen, “Hysteresis Compensation of 3D Printed Sensors by a Power Law Model with Reduced Parameters,” 2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), 2020, pp. 1-4, doi: 10.1109/FLEPS49123.2020.9239580 (Open access).
  • [5] M. Schouten, D. Kosmas and G. Krijnen, “Hysteresis Compensation of 3D Printed Sensors Using a Power Law Model for Various Input Signals,” 2020 IEEE SENSORS, 2020, pp. 1-4, doi: 10.1109/SENSORS47125.2020.9278942 (Open access).
  • [6] A. Dijkshoorn, M. Schouten, G. Wolterink, R. Sanders, S. Stramigioli and G. Krijnen, “Characterizing the Electrical Properties of Anisotropic, 3D-Printed Conductive Sheets for Sensor Applications,” in IEEE Sensors Journal, vol. 20, no. 23, pp. 14218-14227, 1 Dec.1, 2020, doi: 10.1109/JSEN.2020.3007249.
  • [7] G. Wolterink, A. Umrani, M. Schouten, R. Sanders and G. Krijnen, “3D-Printed Calorimetric Flow Sensor,” 2020 IEEE SENSORS, 2020, pp. 1-4, doi: 10.1109/SENSORS47125.2020.9278640 (Open access).
  • [8] A. Dijkshoorn, M. Schouten, S. Stramigioli and G. Krijnen, “Modelling of Anisotropic Electrical Conduction in Layered Structures 3D-Printed with Fused Deposition Modelling” Sensors 21, 2021, no. 11, pp. 3710. https://doi.org/10.3390/s21113710
  • [9] M. Schouten, G. Wolterink, A. Dijkshoorn, D. Kosmas, S. Stramigioli and G. Krijnen, “A Review of Extrusion-Based 3D Printing for the Fabrication of Electro- and Biomechanical Sensors,” in IEEE Sensors Journal, vol. 21, no. 11, pp. 12900-12912, 1 June1, 2021, doi: 10.1109/JSEN.2020.3042436 (Open access)
  • [10] M. Schouten, P. Patel, R. Sanders and G. Krijnen, “3D Printed Differenial Force and Position Sensor Based on Lossy Transmission Lines,” 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), 2021, pp. 1460-1463, doi: 10.1109/Transducers50396.2021.9495724 (Open access).
  • [11] M. Schouten, C. Spaan, D. Kosmas, R. Sanders and G. Krijnen, “3D printed capacitive shear and normal force sensor using a highly flexible dielectric,” 2021 IEEE Sensors Applications Symposium (SAS), 2021, pp. 1-6, doi: 10.1109/SAS51076.2021.9530032 (Open access).

p6

Results from former projects